2021 台灣臨床次世代定序指引探討和比較

前面有稍微分享一下2021 臨床次世代定序實務與應用概論這堂課的內容,當然打鐵趁熱也針對一些主題,自己做了些延伸和討論,這邊就針對CAP和台灣的指引來分享一下,將次世代定序使用在臨床所牽涉到實驗室端的細節是以前沒有面對過的,相對於傳統實驗室檢驗單項指標,次世代定序從檢測原理到結果都是高通量的輸出,也許用臨床檢查來譬喻有點像是病人基因的電腦斷層,但是更為複雜幾倍。

大概7-8年前,世界各國基因體學相關的臨床學術組織便開始努力制定相對應的實驗室指引來幫忙導入次世代定序使用,同時也有如實驗室開發檢驗指引等法規來解套基因定序作為檢驗項目的醫療法規問題,另外,廠商也推動一些機型的法規認證。

reference from 台大醫技 蘇剛毅老師演講內容

在2013年illumina公司的MiSeqDx平台獲得美國FDA的核准,是第一台獲得IVD認證的機台,同時其三個試劑分別是MiSeqDx universal kit和兩個跟囊腫性纖維化(Cystic fibrosis)的定序同時取得認證。後續Ion PGM Dx system也在2017年6月22號成為美國第二台FDA認證的醫學檢驗用NGS儀器。

而後續產業界跟學術界慢慢希望可以用實驗室開發方法的法規來適用這類的法規,所謂的體外診斷器材(IVD, In Vitro diagnostic devices)和實驗室開發方法(Lab developed test)是有一些不太一樣的地方,實驗室開發方法通常是那些進步快速的領域之檢驗項目,因為變化太快速了,要是走IVD法規路線,可能核准完市場已經變化且技術同時已經落後,這部分在次世代定序領域尤為常見。

前陣子其實有蠻多風波的特管辦法(特定醫療技術檢查檢驗醫療儀器實行或使用管理辦法),就是把台灣實驗室開發方法納入管理,其中很多關於資格和操作細節都引發各方人馬的意見。回到臨床次世代定序,因其複雜的特性使其很難以IVD的模式通過,直到如今,美國市場上只有四個腫瘤為主的NGS檢驗項目:

  • Oncomine Dx Target Test: 2018/10/17
    • 包含46個腫瘤相關基因檢測
  • MSK-Impact: 2017/11/15
    • 包含468個腫瘤相關基因檢測
  • FoundationOne CDx: 2017/11/3
    • 包含324個腫瘤相關基因檢測
  • Guardant360 CDx: 2020/08/07
    • 第一個液態活檢針對55個腫瘤基因

體外診斷器材的查驗,其中牽涉到從技術研發、臨床前試驗、第I、II、III期臨床試驗、上市前審查到衛福部查驗登記以及上市後檢測,相對在實驗室自行發展檢測方法(LDT)中,通常是以實驗室的品質系統來取代臨床前試驗、第I、II、III期之臨床試驗,所以相對來說,彈性較大,但是實驗室本身的管控就變得非常重要。

目前在臨床實驗室認證台灣非常重視的CAP(College of Amierical Pathologist)的規範,其近期也有一系列文章和網站資源在提供次世代定序的實驗室規範,蠻值得一看的。

其中主要是分別在Test Content Design, Test Optimization, Test Validation, Quality Management, Bioinformatics and IT這幾個方向有建立一個方便實驗室追尋的worksheet。

在這邊我們同時來比較一下台灣這兩年衛福部提供的指引來探討一下異同和改變,也剛好是前陣子在科內給的演講。

簡報的左邊是引用來自xkcd的卡通圖,談的是當代操作系統如Linux(當今所有雲端系統基本上都基於linux核心,再往上疊加),完整的計算機操作系統,奠基在非常多開發者之程序中,有的程序寫得很好,有的則是很脆弱,假如沒有對整體有個巨觀,很可能出錯了都無法抓蟲,這讓我聯想到次世代定序作為檢驗服務給我的感覺(也是聽完郭靜穎老師和蘇剛毅老師在臨床次世代定序中關於確效認證等等的主題後的想法),雖然目前臨床次世代服務中,所牽涉到的許多細節其實已經靠廠商簡化許多,比如機台自動化、檢體前處理優化到分析套裝軟體,但依舊是複雜模塊的堆疊,如同這左邊這張圖。

台灣這幾年政府也希望能回應醫療人員對於次世代導入臨床之需求,所以分別在2020年和今年年初都有分別針對遺傳類和腫瘤類的基因檢測給予相關的指引,這邊往下比較台灣指引在20200811年公告之精準醫療分子檢測實驗室檢測技術指引-是世代定序應用於遺傳類疾病檢測及20210311公告之精準醫療分子檢測實驗室檢測技術指引-是世代定序應用於腫瘤檢測(草案)。

的確在業界常聽到大家抱怨台灣法規在次世代定序臨床易用這塊很緩慢,也導致普遍醫學中心外並沒有多少人應用次世代定序來幫忙民眾,相對於中國來說,其在2018年開始就有第一份的临床基因检测报告规范与基因检测行业共识探讨來,不過樂觀一點,台灣這一兩年陸陸續續也把遺傳類和腫瘤類指引提出,所以這邊就這個指引和美國CAP的內容來相對應一下,也可以看到今年3月的指引比去年的遺傳類檢測的看法更加純熟。

比較兩個台灣的指引,可以看出今年3月提出的版本,對於生物資訊流程的部分有更多著墨,尤其是在基因資料庫使用與管理建議和檢測報告格式,這部分仔細檢討其實也是當前台灣臨床實驗室比較弱的部分,整體上兩個指引對照CAP下都有所謂的適用範圍、檢測設計考量、檢體類別、影響檢測因素及檢測個步驟,另外,在腫瘤這份也有多著墨一下變異偵測的部分。

就如同這次課程介紹的,次世代定序的應用非常廣,所以兩份指引都有開宗明義定義說適用的範圍,在不同情況下就會有不同的狀況,所以兩者面向的一個是偏產科和兒科以及成人癌症部分的次世代定序檢測。

往下去看兩份指引在步驟建議上,腫瘤檢測的部分可看到觀念比較全面,也加入分析後的品控想法,也有去討論基因庫定序之複雜度及潛在風險評估的部分。

在檢體處理部分,其實跟CAP的工作單中描述的大概相同,但台灣這邊的品質範圍拉的比較大一點,規範細節相似。

檢體在建庫部分也希望臨床檢測的SOP中,也要記錄清楚建庫所相關的細節像是製備方法(擴增法或是捕捉法)、建庫流程中針對核酸片段放大之效能及允收標準,也提到品管物質,這部分的確是目前臨床實驗室比較難符合的地方,同時也會增加品控的成本。

最後在生物資訊分析流程中也希望能把整個流程中所處理的流程、數據分析方法及變異點偵測邏輯都要詳述,且所使用的軟體和資料庫版本都有有所談論,這幾天在多數臨床實驗室沒有配置生資人員情況下,大都是依賴廠商,廠商有時候也是代理國外軟體,所以造成細節部分都沒有人搞得清楚。

進入到檢測品質這邊,跳過檢體和DNA品質這塊,內容跟前述的部分雷同,這裡也有提到要詳述定序覆蓋率,不是只描述平均覆蓋率而已,還要去描述最低和最高的部分,以及目標區域的定序深度(目前臨床使用都還是Panel為主,如同陳沛隆醫師所講),另外,同行和異形合子的基因頻率也要去描述其篩選條件。

取得定序機台的read後,必須要把相關評估read品質和篩選之流程都要記錄清楚,且前一步驟中是否有去掉序列也要描述,最後其比例和重複定序片段的數量和百分比都要紀錄(在此堂課郭老師給予的測試數據中,也會發現其重複定序的片段比率偏高,也是要去理解背後的因素,是否有非預期的原因所造成)

同時整個流程中的定位也要去看其相關指標的細節,不過這算是所謂的post alignment quality control的部分,要去看reads拼貼的狀況,畢竟最後變異的分析都是基於這些read alignment後的結果)。

最後變異偵測的參數則是要依據臨床場景有不太一樣的想法,在做遺傳類變異和腫瘤類體細胞變異偵測上就是不太一樣,其中變異等級之指標、整體變異的指標、變異的變異頻率都是重要需要紀錄的資訊。

變異註解的部分也是一個大功夫,郭老師也花費一整堂的部分來描述這流程中要考慮到的細節和需要調用的資料庫,中間所使用的資料庫種類版本,以及流程都是需要系統性標準化的,另外,判讀後的結果也要好好記錄下來。

最後檢測報告該如何撰寫要記錄什麼,在精準醫療分子檢測實驗室檢測技術指引中也有大概的介紹,大體是該包含什麼資訊:位點、臨床註解、檢測方法、相關限制。

在腫瘤檢測的指引中,開宗明義希望報告儘可能剪短、實際,這中間就給予個別實驗室一定的空間來決定,比較重要的部分則是所謂的陰性結果(Pertinent negative)的呈現,相對來說,就是臨床上喜歡的“rule-out”思考邏輯。

整體來說,次世代基因定序涉到多個流程,每個流程之間都要有相對應之品質管控,從檢體前處理、建庫、定序初始資料、生物資訊流程和報告,如此複雜的過程其實“相當富有挑戰”,但也是吸引人投入的地方吧!也期待越來越多人投入這個領域,能讓這樣技術解放更多關於人們的生理資訊,一方面讓臨床更能給予民眾幫助!

2021 臨床次世代定序實務與應用概論

七月底利用時間請假去參加了台大生物技術研究中心舉辦的臨床次世代定序實務與應用課程,由郭靜穎楊雅倩和蘇剛毅老師所舉辦的,整個課程蠻扎實的,台灣的確需要多一點這類課程,當初主要是對其hands-on的建庫課程感興趣,畢竟這類機會不多,通常都是廠商幫忙完成,所以想辦法實際來碰一下,順便看一下台大醫院這邊基因檢測的概況,課程表如下,分成兩塊:上課以及實作兩個部分,上課部分則是從基本次世代定序介紹到各主題如遺傳、癌症、微生物體、人類白血球抗原分型、次世代定序的法規、確校及認證以。實作部分則是做人類白血球抗原分型搭配和生物資訊分析,很開心能在持續精進,抱持者Rookie spirits,畢竟日新月異,還是一段時間得學習一番,當然不可能什麼都懂,但是至少多聽聽不同人切入次世代定序的看法!

全程可以看到郭靜穎老師辛苦的陪伴,郭靜穎老師在台大醫技系畢業後,至美國加州希望之城生物科學研究所攻取博士學位,然後在希望之城糖尿病與代謝研究中心做博士後研究員,博士後研究結束之後,其在希望之城醫學中心的臨床分子檢驗實驗室做基因變異分析師,然後2017年回來台灣大學醫學檢驗暨生物技術學系做老師,所以課程中也可以聽郭老師分享美國臨床分子檢驗室的架構,聽完覺得要建立一個一流的分子醫學檢驗實驗室真的不簡單,需要非常多不同專長的人員,另外令我很佩服的是楊雅倩老師,楊雅倩老師是台灣檢驗醫學界很資深的教授,但她也是趁者空擋基礎全程參與從做實驗到生物資訊分析,看著老師自己打開筆電跟者學習怎麼使用生物資訊軟體甚至程式碼的輸入,這精神真的值得學習,希望能持續保持如楊雅倩老師這種學習精神!

建庫的過程格外的令人熟悉,前陣子正踩到用磁珠萃取的坑,比如不同比例或是容器等等,這種把實驗之間關聯起來的感覺蠻不錯的!

其中陳沛隆醫師的課程提到蠻多很珍貴的觀點,次世代定序在台灣已經談論快十年,尤其最近五年在台灣做定序的價錢已經很便宜了,往往會給人一種好像這個工具無堅不摧(當然不是,每個檢驗技術都有優點和缺點),陳沛隆醫師則願意分享其看到的機會:

  • Reference genome: population-specific?
  • Haplotyping/phasing
  • Psudogene
  • Structural variation (SV)
  • Dynamic mutation
  • Mobile element
  • Somatic mutation
  • Digenic/oligogenic mode
  • Epigenetic change
  • Non-coding region (such as TAD, UTR, etc.)

上面是完整寫下陳沛隆醫師簡報裡面的字串,可惜時間不足,所以陳醫師沒有辦法一項項細講,感覺裡面滿滿的珠璣!這邊趁機來查一下:

參考基因組在次世代定序中的影響

之前在科內晨會就準備過這個主題,所以可以理解陳醫師的意思!

參考基因組在第二代定序(所謂的次世代定序中)影響頗大,基本上可以暱稱次世代定序為高通量短片段定序,所以參照的拼圖對於把讀長序列(reads)排序回去就變得異常重要,而目前我們所謂的參考基因組主要是使用美國人類基因組計畫中所產生的參考序列其實從2003年的草稿到今天為止,存在很多問題(科學就是越探索,越發現事情比想像中複雜ORZ),美國人類基因組計畫中所使用的檢體其實並非一個人的檢體,而是一群人,然後把它分發給世界各地合作對象來定序,下面是當初的招收廣告:

這是當初刊登在報紙上徵求自願者時候的廣告,蠻有趣的,當初要的是20個人,不過後來我們發現其實實際基因體系列可能大多數是某一位自願者的檢體,且實際可能有約30個人左右

from 2020. Pan-genomics in the human genome era. Nature reviews Genetics

直到今年2021年六月我們才有一個比較接近完整的人類基因組定序取得,是由Telomere-to-telomere consortium團隊所發表的,他們利用了很多第三代定序的技術來混合完成這個任務的,這篇論文The complete sequence of a human genome目前是發表在bioRxiv上面,可以由這篇Nature新聞A complete human genome sequence is close: how scientists filled in the gaps了解這件事代表,另外,他們所使用的定序檢體也很特別,是使用hydatidiform mole,也就是將精子注射到一個沒有核的卵子中,這樣可以一次定序一股染色體,不用面對phasing的問題。

Pseudogenes對於短序列alignment的影響

這也是之前有概念,但沒有特別關注的議題,實際去調查真的發現蠻有趣的,所謂的假基因(Pseudogenes)是染色體上的基因片段,其跟對應的基因相似,但可能散失部分功能,目前認為他可能是細胞複製過程所產生的重複序列,在探討演化的學者這個現象很重要,可以利用Pseudogene的片段來探討種源的距離,這邊因此可以理解到這個Pseudogenes會如何影響到定序結果,一方面是來自Pseudogene的reads可能會被貼到其同源基因區域,或是者反之也會發生(OS:好複雜,難怪很多時候即時有定序資料還是看不出什麼所以然,很多因此會影響結果),在Nature Reviews Genetis 2020年12月後有一篇Overcoming challenges and dogmas to understand the functions of pseudogenes在談論如何研究pseudogene以及他在生物學的角色。

實務上來說,蠻多臨床上重要的基因就有很多這類同源基因,比如PMS2, CYP2D6, CHEK2, SMN1, PKD1,這邊就有一個這類對於二代定序和Sanger定序都是所謂盲點的基因列表:

Mandelker, D., Schmidt, R., Ankala, A. et al. Navigating highly homologous genes in a molecular diagnostic setting: a resource for clinical next-generation sequencing. Genet Med 18, 1282–1289 (2016). https://doi.org/10.1038/gim.2016.58

短片段定序無法偵測之基因變異

知道越多人類序列,才發現人類序列的變化遠比想像的多,從下面的圖可以知道像是Structural variation, Repeat expansion以及所謂Phasing的問題都是目前二代定序的工具無法解決的。

2019. Long-Read Sequencing Emerging in Medical Genetics, Front. Genet

有的基因變異的範圍很方式其實是比想像中多的,從上面的Structural variation也可看到如reverse或是translocation這類的轉位,短片段的序列都還是能得到,但是alignment會去參考基因組時,就看不到這樣的資訊,以前覺得沒有太大影響,但後來發現這些都多多少少造成其基因表現的不同。

動態突變 Dynamic mutation:短片段重複相關的疾病disorder

動態突變造成的疾病也是之前我不太懂的,仔細一查,維基百科的定義是:

an unstable heritable element where the probability of expression of a mutant phenotype is a function of the number of copies of the mutation. That is, the replication product (progeny) of a dynamic mutation has a different likelihood of mutation than its predecessor

from Dynamic mutation, Wiki

不過目前比較常用Trinucleotide repeat disorder來形容,跟此相關的疾病也不少,最知名的就是亨廷頓舞蹈症,當然還有蠻多跟此相關的疾病:

這類疾病可能使用NGS在定序時,因為參考基因組的關係,可能不容易檢測到,在一般的alignment分析中應該也不容易排列好,看起來也不是很容易被探討的疾病種類。不過幾篇文獻看起來是特別的一群基因疾病

  • Mirkin, S. Expandable DNA repeats and human disease. Nature 447, 932–940 (2007). https://doi.org/10.1038/nature05977
  • Usdin K, House NC, Freudenreich CH. Repeat instability during DNA repair: Insights from model systems. Crit Rev Biochem Mol Biol. 2015;50(2):142-167. doi:10.3109/10409238.2014.999192
  • McIvor EI, Polak U, Napierala M. New insights into repeat instability: role of RNA•DNA hybrids. RNA Biol. 2010;7(5):551-558. doi:10.4161/rna.7.5.12745
  • Li, D., Pan, S., Zhang, H. et al. A comprehensive microsatellite landscape of human Y-DNA at kilobase resolution. BMC Genomics 22, 76 (2021). https://doi.org/10.1186/s12864-021-07389-5
  • Ajjugal, Y., Kolimi, N. & Rathinavelan, T. Secondary structural choice of DNA and RNA associated with CGG/CCG trinucleotide repeat expansion rationalizes the RNA misprocessing in FXTAS. Sci Rep 11, 8163 (2021). https://doi.org/10.1038/s41598-021-87097-y

從下面的圖也可以看出來在不同基因甚至區段上面的這種重複序列,可能跟不同的疾病相關連,看到這邊真的驚嘆人類基因體的奧秘,另一個角度來看,人類的疾病也可以看成是基因多型性的一種表現吧!

from Mirkin, S. Expandable DNA repeats and human disease. Nature 447, 932–940 (2007). https://doi.org/10.1038/nature05977

雙基因或多基因遺傳模式(Digenic/Oligogenic Mode)

顧名思義就是某一個性狀是由多個基因所造成的,所以當同時有兩個變異發生在兩個基因上時就會造成某個性狀產生,這時候可以稱為Digenic inheritance,這類在之前也是比較少見(當然也是武器不夠好),慢慢也開始有一些文章開始探討!

  • A genome-wide case-only test for the detection of digenic inheritance in human exomes. PNAS. 2020, 117 (32) 19367-19375; DOI: 10.1073/pnas.1920650117
  • The digenic causality in familial hypercholesterolemia: revising the genotype – phenotype correlations of the dsiease. Front Genet. 2021.  https://doi.org/10.3389/fgene.2020.572045
  • Genetic modifiers and oligogenic inheritance. 2021. Cold Spring Harbor Perspectives in Medicine
  • Digenic inheritance and genetic modifiers. Clinical Genetics. 2018. https://doi.org/10.1111/cge.13150

陳沛隆醫師所列出的每一點都有蠻多可學習的地方,也可以一窺所謂遺傳基因體學的面貌!