AWK是一個古老的Unix程式,在1970年代在當時資通訊最前沿的貝爾實驗室,由三位工程師Alfred Aho, Peter Weinberger, Brian Kernighan共同開發的,主要是一款字串處理程式。
AWK reads the input a line at a time. A line is scanned for each pattern in the program, and for each pattern that matches, the associated action is executed.
The Current State of Resident Training in Genomic Pathology: A Comprehensive Analysis Using the Resident In-Service Examination, American Journal of Clinical Pathology, Volume 142, Issue 4, October 2014, Pages 445–451, https://doi.org/10.1309/AJCPH2A4XTXJUKDZ
from Figure 4. Haspel RL, Genzen JR, Wagner J, Lockwood CM, Fong K; Training Residents in Genomics (TRIG) Working Group. Integration of Genomic Medicine in Pathology Resident Training. Am J Clin Pathol. 2020;154(6):784-791. doi:10.1093/ajcp/aqaa094
判斷否個基因變異的臨床意義 Determine Significance of Genetic Variant
選擇適合的分生檢驗方法 Selecting the Best BLock for Genetic Testing
討論切片報告 Discuss Colon-Biopsy Report
對資料庫的掌握程度
from Figure 5, Haspel RL, Genzen JR, Wagner J, Lockwood CM, Fong K; Training Residents in Genomics (TRIG) Working Group. Integration of Genomic Medicine in Pathology Resident Training. Am J Clin Pathol. 2020;154(6):784-791. doi:10.1093/ajcp/aqaa094
from 2019, Integrating Molecular Biology and Bioinformatics Education from 2019, Integrating Molecular Biology and Bioinformatics Education
閱讀參考:
Bandura, A. (1977). Social learning theory Englewood Cliffs: NJ: Prentice-Hall.
Cruess, S. R., Cruess, R. L., & Steinert, Y. (2008). Teaching Rounds: Role modelling—making the most of a powerful teaching strategy. BMJ: British Medical Journal, 336(7646), 718.
Snell, L. (2011). The resident-as-teacher: it’s more than just about student learning. Journal of graduate medical education, 3(3), 440-441.
Sternszus, R., & Cruess, S. R. (2016). Learning from role modelling: making the implicit explicit. The Lancet, 387(10025), 1257-1258.
Wright, S., Wong, A., & Newill, C. (1997). The impact of role models on medical students. Journal of General Internal Medicine, 12(1), 53-56.
Rosenbaum JN, Berry AB, Church AJ, Crooks K, Gagan JR, López-Terrada D, Pfeifer JD, Rennert H, Schrijver I, Snow AN, Wu D, Ewalt MD. A Curriculum for Genomic Education of Molecular Genetic Pathology Fellows: A Report of the Association for Molecular Pathology Training and Education Committee. J Mol Diagn. 2021 Oct;23(10):1218-1240. doi: 10.1016/j.jmoldx.2021.07.001. Epub 2021 Jul 7. PMID: 34245921
(2021). Productive visualization of high-throughput sequencing data using the SeqCode open portable platform. Sci Rep
(2021). Community development, implementation, and assessment of a NIBLSE bioinformatics sequence similarity learning resource. PLoS Once
(2017). Bioinformatics Education in Pathology Training: Current Scope and Future Direction. Cancer Informatics
(2021). Pathology Residency Program Special Expertise Tracks Meet the Needs of an Evolving Field. Acd Pathology
(2014). The Current State of Resident Training in Genomic Pathology: A Comprehensive Analysis Using the Resident In-Service Examination, American Journal of Clinical Pathology
(2020). Integration of Genomic Medicine in Pathology Resident Training: A Work in Progress, American Journal of Clinical Pathology, Volume 154, Issue 6, December 2020, Pages 784–791, https://doi.org/10.1093/ajcp/aqaa094
(2019). Regulation of Laboratory-Developed Tests A Clinical Laboratory Perspective
(2017). Bioinformatics Education in Pathology Training: Current Scope and Future Direction
(2019). Fostering bioinformatics education through skill development of professors: Big Genomic Data Skills Training for Professors
(2019), The Effect of Laboratory Test-Based Clinical Decision Support Tools on Medication Errors and Adverse Drug Events: A Laboratory Medicine Best Practices Systematic Review.
(2019). Integrating Molecular Biology and Bioinformatics Education. Journal of Integrative Bioinformatics
(2021).Ten simple rules for organizing a bioinformatics training course in low- and middle-income countries. PLoS One
從核酸序列的分析到蛋白質結構的預測:蛋白質資料庫(Protein Data Bank, PDB),從1994年還有蛋白質結構預測的關鍵評估(Critical Assessment of protein Structure Prediction, CASP)比賽,近年來的機器學習也開始被應用於這類巨量資料之中。
2015年美國總統歐巴馬提出的精準醫學計畫(Precision Medicine Initiative),預計搜集100萬人的基因資料用於疾病診查使用。
次世代定序也開始被應用在不只人類疾病研究上,傳統微生物學研究,必須仰賴培養和後續的生化分類,或是簡單使用16s定序,如今使用次世代定序則依次可以探索檢體內所有的微生物核酸序列,美國腸道協會(American Gut Consortium)在2012年推出美國人腸道計畫(American Gut Project),其在2018年發表了第一個全面性的人類微生物體學資料庫,影響大眾開始對人體微生物群的興趣。
The 2014 fair will feature an Algae Bar at which “mock-turkey" and “pseudosteak" will be served. It won’t be bad at all (if you can dig up those premium prices), but there will be considerable psychological resistance to such an innovation.
Company with innovative product:Impossible Foods, Beyond Meat, Innocent Meat, New Age Meats, Change Foods, Eat Just, Good Chicken, Upside Foods, Ginkgo Biowork, Joyn Bio
未來這樣的產業趨勢主要由兩個東西決定:技術成熟(time to maturity)和技術可接受性(diffusion)。技術成熟的時間,則跟產業能否規模化和成本相關聯,大概百分之九十的合成生物學技術,都無法規模化,規模化通常代表者菌株的選擇和優化,以酵母來說,至少要能每年60萬公升,動物細胞則是每年4萬5公升,而規模化需要時間,伴隨者就是成本的降低。技術可接受性,則跟當地法規、產業聚落、投資和產品特性央關,以及市場的選擇,是否生產目標本身極具被取代特性,這速度也跟相對於的人才供應有關。
這邊先打個預防針,再如何導入自動化管理,始終還是需要人的介入,所以最終還是會需要花些時間參與其中,但至少可以從部分重複性的勞動中解放出來,隨者我們很多行為都在電腦中操作,有時候我們會發現我們做的事情就是重複性的點擊和寄件,這時候其實這些行為也可以被自動化,這就是所謂的機器人流程自動化(Robotic Process Automation)(P.S: 假如要很…技術宅的來說明的話),從簡單的點擊自動化到判讀發報告工具等等都是這類的概念。
相信身邊很多開始需要處理行政雜務的朋友,常需要做的事情就是各種提醒和收集評分表或是報告,一部分的人慢慢的會使用如Gmail, Google Form, Google doc, Google sheet等等工具導入電子化,但最煩的是日期到了你必須自己來寄信、彙整、收集。
但其實可以再往下多自動化一步。(假如你是Google工具重度使用者的話)
這邊分享一下你可以使用Google App Script來讓這些工具自動化完成,做到如下:
特定日期發信提醒上課講師,給予講師當天課程學生名單,且將評分表附在信中寄給學生或是相對應的老師!
什麼是Google App Script?
我們常常在用的如Gmail, Google Slides, Google Sheet, Google Form等等都是所謂的Google Apps,而我們使用的時候都是使用圖形化介面,在瀏覽器中開啟信箱,寫信和收信,附上郵件,在google doc上面協作,撰寫草稿,或是利用Google Slides來做簡報,使用Google Form來設計問券,這些工具就是所謂的Google App,正常情況下你就是利用滑鼠來使用,但其實最近兩年Google為了讓企業或是個人能更高效地利用,導入了所謂的Google App Script工具,讓你使用簡單的代碼,便能輕鬆的自動化這些當初用滑鼠來使用的情節,且可以輕鬆地串接每個App,讓工作流程自動化且排程化。
簡單來說,你每個建立的google doc, google slide, googlde sheet, googlde form都是一個可以用程式來調用的檔案,具有唯一的物件Id。很酷吧!
整個畫面就如同一個簡單的編輯器,裡面可以直接撰寫代碼來控制你的文件,主要是使用Javascript的語法,所以相對容易,你不用在自己學習新的語法和觀念,只需要搞懂Google App Scrip裡面調用Gmail, Google Sheet, Google Form的函式即可,以及你想要怎麼去串接資料來達成你想要的任務。
這一年來參與的跨國課程How to grow almost everything(HTGAA), diyBio, global biocommunity, auto open lab等等,都越發激起對於這件事的好奇和體悟,就是如何能建立一個好的社群,而區塊鏈技術對社群營造的幫助也是我專注的重點之一,如今發現基於區塊鏈所創造的Decentralized Automonous Organization, DAO(去中心化自治組織)在生技開發中的應用會是很有趣的一個模式,比如專利的授權能否結合區塊鏈等等,也有一些實際在運作的組織再以此為手段如LabDAO, VitalDAO等等。
相對於Kevin Kelly在2008年那篇一千個朋友,這篇cdixon的文章NFTs and A Thousand True Fans寫於2021-2-27號,則把這個概念套用在區塊鏈其中一種應用中,稱作NFT,關於NFT的定義在網路上應該有很多介紹,我的理解則是一種在區塊鏈上的應用概念,附於特定事物一個撰寫在區塊鏈上的擁有權(ownership),但實際上則有各式各樣應用,這邊節錄cdixon文章中對於NFT的定義:
NFTs are blockchain-based records that uniquely represent pieces of media. The media can be anything digital, including art, videos, music, gifs, games, text, memes, and code. NFTs contain highly trustworthy documentation of their history and origin, and can have code attached to do almost anything programmers dream up (one popular feature is code that ensures that the original creator receives royalties from secondary sales). NFTs are secured by the same technology that enabled Bitcoin to be owned by hundreds of millions of people around the world and represent hundreds of billions of dollars of value
Our mission is to accelerate life science innovation and collaboration. We are doing this by creating new mechanisms and markets for the exchange of R&D services and scientific data. Specifically, we’re building an open-source & community-owned/operated/governed protocol where users can buy and sell research contracts, run experiments with standardized protocols, find collaborators, and securely exchange data. “an open source protocol to act as the execution layer for decentralized science"
from LabDAO, mission
推薦可以進入他們的Discord看看,裡面的知識密度頗高,在探討生物資訊、自動化、儀器開發等等主題,但有趣的是他們會以能delivery為目標來做規劃和探討,這社群是由Boris Dyakov發起,本身是在加拿大的Lunenfeld-Tanenbaum Research Institute (LTRI) 做博士候選人,因為才建立一個多月,所以非常值得在裡面多晃晃,參與這些領域匯聚的區域。
Computer Age Statistical Inference: Algorithms, Evidence, and Data Science, 2016
The Biostar Handbook: Bioinformatics Data Analysis Guide, 2016
Bioinformatics Data Skills, 2015
Muhammad A. Alam (2019), “ECE 695E: An Introduction to Data Analysis, Design of Experiment, and Machine Learning," https://nanohub.org/resources/28817.
Talks
National Human Genome Research Institute: Machine Learning in Genomics: Tools, Resources, Clinical Applications and Ethics